DFT for molecule-surface interactions

First-principles simulation has played an ever-increasing role in the discovery and interpretation of the chemical properties of surface–adsorbate interactions. Nevertheless, key challenges remain for the computational chemist wishing to study surface chemistry: modelling the full extent of experimental conditions, managing computational cost, minimizing human effort in simulation set-up and maximizing accuracy. Our recent work introduces new tools for streamlining surface chemistry simulation set-up and reviews some of the challenges in first-principles, density functional theory (DFT) simulation of surface phenomena. 

Furthermore, we provide a worked example of Co tetraphenylporphyrin on Au(1 1 1) in which we analyze electronic and energetic properties with semi-local DFT and compare to predictions made from hybrid functional and the so-called DFT+U correction. Through both review and the worked example, we aim to provide a pedagogical introduction to the challenges and the insight that first-principles simulation can provide in surface chemistry.

Check out our recent mini-review here!

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: