Predicting simulation outcomes with ML

High-throughput computational screening for chemical discovery mandates the automated and unsupervised simulation of thousands of new molecules and materials. In challenging materials spaces, such as open shell transition metal chemistry, characterization requires time-consuming first-principles simulation that often necessitates human intervention. These calculations can frequently lead to a null result, e.g., the calculation does not converge or the molecule does not stay intact during a geometry optimization. To overcome this challenge toward realizing fully automated chemical discovery in transition metal chemistry, we have developed the first machine learning models that predict the likelihood of successful simulation outcomes. We train support vector machine and artificial neural network classifiers to predict simulation outcomes (i.e., geometry optimization result and degree of ⟨S2⟩ deviation) for a chosen electronic structure method based on chemical composition. For these static models, we achieve an area under the curve of at least 0.95, minimizing computational time spent on nonproductive simulations and therefore enabling efficient chemical space exploration. We introduce a metric of model uncertainty based on the distribution of points in the latent space to systematically improve model prediction confidence. In a complementary approach, we train a convolutional neural network classification model on simulation output electronic and geometric structure time series data. This dynamic model generalizes more readily than the static classifier by becoming more predictive as input simulation length increases. Finally, we describe approaches for using these models to enable autonomous job control in transition metal complex discovery.

Check out our recent publication in Journal of Chemical Theory and Computation here! The static classifier model is also available for use in molSimplify. Check it out here!

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: