Using literature data to engineer MOF stability

Although the tailored metal active sites and porous architectures of MOFs hold great promise for engineering challenges ranging from gas separations to catalysis, a lack of understanding of how to improve their stability limits their use in practice. To overcome this limitation, we extract thousands of published reports of the key aspects of MOF stability necessary for their practical application: the ability to withstand high temperatures without degrading and the capacity to be activated by removal of solvent molecules. From nearly 4,000 manuscripts, we use natural language processing and image analysis to obtain over 2,000 solvent-removal stability measures and 3,000 thermal degradation temperatures. We analyze the relationships between stability properties and the chemical and geometric structures in this set to identify limits of prior heuristics derived from smaller sets of MOFs. By training predictive machine learning (ML, i.e., Gaussian process and artificial neural network) models to encode the structure–property relationships with graph- and pore-structure-based representations, we are able to make predictions of stability orders of magnitude faster than conventional physics-based modeling or experiment. Interpretation of important features in ML models provides insights that we use to identify strategies to engineer increased stability into typically unstable 3d-transition-metal-containing MOFs that are frequently targeted for catalytic applications. We expect our approach to accelerate the time to discovery of stable, practical MOF materials for a wide range of applications.

Check out Aditya's recent open access article in the Journal of the American Chemical Society here!

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: