Mapping the surface of InP QD materials

Modifying the optoelectronic properties of nanostructured materials through introduction of dopant atoms has attracted intense interest, but the approaches employed are often trial and error, preventing rational design. We demonstrate the power of large-scale electronic structure calculations with density functional theory (DFT) to build an atlas of preferred sites for a range of M(II) and M(III) dopants in the representative III-V InP magic size cluster (MSC).

Harder,better,faster,stronger: large-scale QM/MM

Computational prediction of enzyme mechanism and protein function requires accurate physics-based models and suitable sampling. We discuss recent advances in large-scale quantum mechanical (QM) modeling of biochemical systems that have reduced the cost of high-accuracy models. Tradeoffs between sampling and accuracy have motivated modeling with molecular mechanics (MM) in a multiscale QM/MM or iterative approach.

The influence of DFT functional on catalysis

High-throughput computational catalyst studies are typically carried out using density functional theory (DFT) with a single, approximate exchange-correlation functional. In open shell transition metal complexes (TMCs) that are promising for challenging reactions (e.g., C–H activation), the predictive power of DFT has been challenged, and properties are known to be strongly dependent on the admixture of Hartree-Fock (HF) exchange.

Chem. Rev. on ML for transition metals is out!

Transition-metal complexes are attractive targets for the design of catalysts and functional materials. The behavior of the metal–organic bond, while very tunable for achieving target properties, is challenging to predict and necessitates searching a wide and complex space to identify needles in haystacks for target applications. This review will focus on the techniques that make high-throughput search of transition-metal chemical space feasible for the discovery of complexes with desirable properties.

Pages

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: