Electronic allostery in protein dynamics

The delicate interplay of covalent and noncovalent interactions in proteins is inherently quantum mechanical and highly dynamic in nature. To directly interrogate the evolving nature of the electronic structure of proteins, we carry out 100-ps-scale ab initio molecular dynamics simulations of three representative small proteins with range-separated hybrid density functional theory. We quantify the nature and length-scale of the coupling of residue-specific charge probability distributions in these proteins.

What's needed for intelligent workflows?

Accelerated discovery with machine learning (ML) has begun to provide the advances in efficiency needed to overcome the combinatorial challenge of computational materials design. Nevertheless, ML-accelerated discovery both inherits the biases of training data derived from density functional theory (DFT) and leads to many attempted calculations that are doomed to fail. Many compelling functional materials and catalytic processes involve strained chemical bonds, open-shell radicals and diradicals, or metal–organic bonds to open-shell transition-metal centers.

Molecular DFT+U for delocalization error

While density functional theory (DFT) is widely applied for its combination of cost and accuracy, corrections (e.g., DFT+U) that improve it are often needed to tackle correlated transition-metal chemistry. In principle, the functional form of DFT+U, consisting of a set of localized atomic orbitals (AO) and a quadratic energy penalty for deviation from integer occupations of those AOs, enables the recovery of the exact conditions of piecewise linearity and the derivative discontinuity.

Where are the stars in chemical space?

The variability of chemical bonding in open-shell transition-metal complexes not only motivates their study as functional materials and catalysts but also challenges conventional computational modeling tools. Here, tailoring ligand chemistry can alter preferred spin or oxidation states as well as electronic structure properties and reactivity, creating vast regions of chemical space to explore when designing new materials atom by atom.

Pages

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: