Predicting electronic structure with ANNs

Direct density functional theory (DFT) simulation is the critical bottleneck in high-throughput computational screening for inorganic materials and molecular transition metal complexes. These calculations are computationally costly and the calculated properties are sensitive to the exchange–correlation functional employed. Screening efforts for molecular inorganic systems are complicated by the uncertain spin-state ordering of hypothetical complexes and difficulty in obtaining good initial guess geometries.

Discovering chemistry from large databases

Using our recently developed inorganic discovery toolkit, molSimplify code, candidate molecules were obtained from the ChEMBL-19 database (> 1M molecules) to address a critical outstanding challenge in materials science. These databases of bioactive organic molecules are typically employed for discovery of therapeutic drug-like molecules; we instead demonstrated their power as a tool to discover design rules for inorganic complexes while maintaining realism (i.e., stable, synthetically accessible substituents) and providing diversity in functional groups.

Inorganic discovery & machine learning

Virtual high throughput screening has emerged as a powerful tool for the discovery of new materials. Although the computational materials science community has benefited from open source tools for the rapid structure generation, calculation, and analysis of crystalline inorganic materials, software and strategies to address the unique challenges of inorganic complex discovery have not been as widely available. We present our recent developments in the open source molSimplify code for inorganic discovery.

Curvature in DFT (JCP Ed. Choice 2016)

Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization.


About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: