Approximate semilocal density functional theory (DFT) is known to underestimate surface formation energies yet paradoxically overbind adsorbates on catalytic transition-metal oxide surfaces due to delocalization error. The low-cost DFT + U approach only improves surface formation energies for early transition-metal oxides or adsorption energies for late transition-metal oxides. In this work, we demonstrate that this inefficacy arises due to the conventional usage of metal-centered atomic orbitals as projectors within DFT + U. We analyze electron density rearrangement during surface formation and O atom adsorption on rutile transition-metal oxides to highlight that a standard DFT + U correction fails to tune properties when the corresponding density rearrangement is highly delocalized across both metal and oxygen sites. To improve both surface properties simultaneously while retaining the simplicity of a single-site DFT + U correction, we systematically construct multi-atom-centered molecular-orbital-like projectors for DFT + U. We demonstrate this molecular DFT + U approach for tuning adsorption energies and surface formation energies of minimal two-dimensional models of representative early (i.e., TiO2) and late (i.e., PtO2) transition-metal oxides. Molecular DFT + U simultaneously corrects adsorption energies and surface formation energies of multilayer models of rutile TiO2(110) and PtO2(110) to resolve the paradoxical description of surface stability and surface reactivity of semilocal DFT.