Research in the Kulik group

The Kulik group develops advanced simulation methodology ranging from data-driven to computationally-demanding but very accurate quantum mechanical simulation for the advancement of understanding and design of materials, inorganic catalysts, and biological enzymes. Simulations provide researchers in the Kulik group unique insights into relationships between how structure (i.e., where the atoms and electrons are) informs function (i.e., what do we see at the macroscopic scale). These tools all underlie our advancement of new methods to design molecules atom-by-atom. We also advance and use novel computing architectures to make normally impossible to solve calculations tractable, providing some key insights into how electronic structure teaches us new design rules in large, complex systems such as enzymes. Keep up to date by:

Large scale QM in enzyme catalysis

Enzymes have evolved to facilitate challenging reactions at ambient conditions with specificity seldom matched by other catalysts. Computational modeling provides valuable insight into catalytic mechanism, and the large size of enzymes mandates multi-scale, quantum mechanical-molecular mechanical (QM/MM) simulations.

ML for orbital energies in inorganic chemistry

Machine learning the electronic structure of open shell transition metal complexes presents unique challenges, including robust and automated data set generation. Here, we introduce tools that simplify data acquisition from density functional theory (DFT) and validation of trained machine learning models using the molSimplify automatic design (mAD) workflow.

First-principles models of QD growth

Indium phosphide quantum dots (QDs) have emerged as a candidate to replace more toxic II-VI CdSe QDs, but production of high-quality III-V InP QDs with targeted properties requires a better understanding of their growth. We develop a first-principles-derived model that unifies InP QD formation from isolated precursor and early stage cluster reactions to 1.3-nm magic sized clusters, and we rationalize experimentally-observed properties of full sized > 3 nm QDs.

Pages

About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: