Research in the Kulik group

The Kulik group develops advanced simulation methodology ranging from data-driven to computationally-demanding but very accurate quantum mechanical simulation for the advancement of understanding and design of materials, inorganic catalysts, and biological enzymes. Simulations provide researchers in the Kulik group unique insights into relationships between how structure (i.e., where the atoms and electrons are) informs function (i.e., what do we see at the macroscopic scale). These tools all underlie our advancement of new methods to design molecules atom-by-atom. We also advance and use novel computing architectures to make normally impossible to solve calculations tractable, providing some key insights into how electronic structure teaches us new design rules in large, complex systems such as enzymes. Keep up to date by:

Non-empirical corrections to DFT

Density functional theory (DFT) is widely applied to both molecules and materials, but well known energetic delocalization and static correlation errors in practical exchange-correlation approximations limit quantitative accuracy. Common methods that correct energetic delocalization error, such as the Hubbard U correction in DFT+U or Hartree-Fock exchange in global hybrids, do so at the cost of worsening static correlation error.

Mining unexpected interactions in proteins

We have investigated unexpectedly short non-covalent distances (< 85% of the sum of van der Waals radii) in X-ray crystal structures of proteins. We curated over 11,000 high quality protein crystal structures and an ultra-high resolution (1.2 Å or better) subset containing > 900 structures. Although our non-covalent distance criterion excludes standard hydrogen bonds known to be essential in protein stability, we observed over 75,000 close contacts in the curated protein structures.

Predicting simulation outcomes with ML

High-throughput computational screening for chemical discovery mandates the automated and unsupervised simulation of thousands of new molecules and materials. In challenging materials spaces, such as open shell transition metal chemistry, characterization requires time-consuming first-principles simulation that often necessitates human intervention. These calculations can frequently lead to a null result, e.g., the calculation does not converge or the molecule does not stay intact during a geometry optimization.


About Us

The Kulik group focuses on the development and application of new electronic structure methods and atomistic simulations tools in the broad area of catalysis.

Our Interests

We are interested in transition metal chemistry, with applications from biological systems (i.e. enzymes) to nonbiological applications in surface science and molecular catalysis.

Our Focus

A key focus of our group is to understand mechanistic features of complex catalysts and to facilitate and develop tools for computationally driven design.

Contact Us

Questions or comments? Let us know! Contact Dr. Kulik: